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Abstract

Primates show activity patterns ranging from nocturnality to diurnality, with a few species showing activity both during day
and night. Among anthropoids (monkeys, apes and humans), nocturnality is only present in the Central and South American
owl monkey genus Aotus. Unlike other tropical Aotus species, the Azara’s owl monkeys (A. azarai) of the subtropics have
switched their activity pattern from strict nocturnality to one that also includes regular diurnal activity. Harsher climate, food
availability, and the lack of predators or diurnal competitors, have all been proposed as factors favoring evolutionary
switches in primate activity patterns. However, the observational nature of most field studies has limited an understanding
of the mechanisms responsible for this switch in activity patterns. The goal of our study was to evaluate the hypothesis that
masking, namely the stimulatory and/or inhibitory/disinhibitory effects of environmental factors on synchronized circadian
locomotor activity, is a key determinant of the unusual activity pattern of Azara’s owl monkeys. We use continuous long-
term (6–18 months) 5-min-binned activity records obtained with actimeter collars fitted to wild owl monkeys (n = 10
individuals) to show that this different pattern results from strong masking of activity by the inhibiting and enhancing
effects of ambient luminance and temperature. Conclusive evidence for the direct masking effect of light is provided by
data showing that locomotor activity was almost completely inhibited when moonlight was shadowed during three lunar
eclipses. Temperature also negatively masked locomotor activity, and this masking was manifested even under optimal light
conditions. Our results highlight the importance of the masking of circadian rhythmicity as a determinant of nocturnality in
wild owl monkeys and suggest that the stimulatory effects of dim light in nocturnal primates may have been selected as an
adaptive response to moonlight. Furthermore, our data indicate that changes in sensitivity to specific environmental stimuli
may have been an essential key for evolutionary switches between diurnal and nocturnal habits in primates.
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Introduction

Primates show activity patterns that range from nocturnality to

diurnality, with a few species showing activity both during the day

and night [1–4]. Among anthropoids (monkeys, apes and humans),

nocturnality is only present in the Central and South American

owl monkeys (Aotus spp), relatively small (approx. 1 kg), arboreal,

socially monogamous primates that range from Panamá to

Argentina [5,6]. Observational studies have shown that most

species in the genus are nocturnal [5], but the Azara’s owl

monkeys (A. azarai) of the subtropical Gran Chaco of Argentina

and Paraguay have switched their activity pattern from strict

nocturnality to one that also includes regular diurnal activity [7].

Harsher climate, food availability, and the lack of predators or

diurnal competitors, have all been proposed as possible ultimate

environmental factors favoring evolutionary switches in the

activity patterns of primates [1,6,8–18], and other mammals

[19–22]. However, the observational nature of field studies, the

results of which frequently depend on the observers’ activity

rhythms and are biased by impaired vision during dark moonless

nights, has generally limited our understanding of the proximate

mechanisms responsible for the change in activity patterns of

cathemeral species.

The A. azarai population of northern Argentina [23,24] offers a

unique opportunity to identify the environmental and biological

factors that influence the distribution of activity across the 24-h

day, which results in this species-specific cathemeral activity

pattern [25]. In contrast to other owl monkeys, the population is

located barely outside the tropics (58u 119 W, 25u 589S) where

annual fluctuations in photoperiod and temperature generate

appropriate conditions for analysing the effects of each environ-

mental factor. The goal of our study was to evaluate the hypothesis

that masking, namely the stimulatory and inhibitory effects of

environmental factors on synchronized circadian locomotor

activity [26,27], is a key proximate determinant of the unusual

activity pattern of Azara’s owl monkeys.
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The daily distribution of activity results from an interplay

between two control mechanisms: an endogenous (i.e. circadian)

timing system synchronized (entrained) to the light-dark (LD)

cycle, and the ‘masking’ of the resulting circadian activity pattern

by inhibiting or enhancing direct effects of light and other

environmental factors [28]. The goal of the present study was to

non-invasively establish how these two regulatory mechanisms

may play out as determinants of the temporal distribution of

locomotor activity in owl monkeys living in their natural habitat.

We evaluated whether the species-specific pattern of activity fits a

model in which circadian nocturnal locomotor activity is

negatively masked (inhibited) by the low luminance levels during

new-moon nights and cold environmental temperatures, and

positively masked (disinhibited or enhanced) by higher luminance

levels during moonlit nights. Additionally, we tested the prediction

that the high activity levels expected during full-moon nights

would be inhibited during three total lunar eclipses. We captured

10 A. azarai individuals in the gallery forests along the Guaycolec

River in the Province of Formosa, Argentina [29] and fitted them

with actimeter collars (ActiwatchH AW4 accelerometer/data

logger devices), programmed to record and store activity in 5-

min intervals, for periods that ranged between 6 and 18 months.

All animals were recaptured 3–6 months later to retrieve the

collars and/or re-fit them with a newly programmed one. Our

data indicate that although the circadian system of A. azarai is

programmed for a nocturnal activity pattern, masking by

environmental light and temperature is a key determinant for

the expression of nocturnality.

Results and Discussion

Nocturnal and diurnal activity in owl monkeys
The activity of owl monkeys was predominantly restricted to

dawn and dusk, and had a nocturnal component that was clearly

associated with the lunar cycle (Figure 1A, B). The activity pattern

of all 10 individuals, illustrated in Figure 1A by two representative

individuals, was in solid agreement with data reported previously

under laboratory conditions for other owl monkey species [30–31],

and with a shorter-term study of A. azarai in the wild [7].

Nocturnal activity was more consolidated during the relatively

warmer months of September to March than during the colder

months of April to August, when temperatures in the Argentinean

Chaco regularly fall below 10uC [24,32]. Throughout the year,

nocturnal activity (21:00–06:00 h) was higher during full-moon

nights (51.661.1% of daily total activity) than during new-moon

ones (25.961.0%; Wilcoxon signed-ranks test, two-tailed,

p = 0.005, z = 22.803, n = 10 individuals) and these peaks of

nocturnal activity were consistently followed by mornings of low

activity (Fig. 1A). Conversely, new-moon nights were usually

followed by mornings of higher diurnal activity (06:00–09:00 h,

26.760.7% of daily total activity) than mornings following full-

moon nights (14.460.7%; Wilcoxon signed-ranks test, two-tailed,

p = 0.005, z = 22.803, n = 10 individuals). The daily profile of

activity, irrespective of season and lunar month, showed

prominent dawn and dusk peaks with more predominant activity

Figure 1. Locomotor activity patterns of two A. azarai males
free-ranging in their natural environment. A. Double plot of
original activity recordings. Days are stacked vertically and black bars

indicate the average locomotor activity during 15 min throughout each
24-h period. Black circles represent new-moon days. SS, summer
solstice, WS, winter solstice. Arrows highlight representative mornings
of lower activity following full-moon nights. B. Mean wave profiles of
the daily activity of the same animals shown in (a). Each point
represents the average locomotor activity taken for each 15-min
interval throughout the recordings shown in (A). Bars represent
standard errors of the mean.
doi:10.1371/journal.pone.0012572.g001
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during the night than during the day (Figure 1B). A similar pattern

was observed in all 10 animals studied.

Our analysis of locomotor activity in A. azarai, recorded

remotely, non-invasively and with high time-resolution throughout

several months is consistent with several observational studies in

nocturnal primates that have found higher activity during full-

moon nights [4,8,11], as well as with a short study of A. azarai and

one of red-fronted lemurs (Eulemur fulvus) in which activity was

recorded with actimeter collars [16,33].

Seasonal changes and a dual oscillator model
Circadian clocks have a period that is close, but not equal, to

24 h. Therefore they need to be entrained by 24-h environmental

cycles. The light-dark (LD) cycle is the most pervasive and precise

entraining agent and a circadian rhythm is entrained when it bears

a constant phase relationship to it. According to a so-called

discrete (also known as non-parametric) model of entrainment, this

constant phase relationship between the rhythm and the

environmental cycle can be achieved by daily shifts in the phase

of the circadian clock that drives the rhythm [34,35]. These daily

phase corrections would compensate the difference between the

circadian clock period and the environmental cycle. Previous

laboratory studies of the Colombian owl monkey, A. lemurinus

griseimembra, indicated that entrainment to LD cycles was in line

with the discrete model of entrainment [36]. Furthermore,

evidence from nocturnal rodents studied in the laboratory has

led to the formulation of a dual oscillator model in which two

circadian clocks, namely a morning (M) and an evening (E)

oscillator, are coupled with each other, but also independently

entrained by photic cues of dawn and dusk, respectively [37,38].

As predicted by the dual oscillator model, a seasonal compression

and decompression of the daily activity bout is clearly observed in

the Aotus’ activity patterns presented in Figure 1A. For every

subject, the two peaks were significantly correlated with the time of

sunset and sunrise, respectively (average Pearson’s correlation

coefficient (range): rSS = 0.89 (0.4921.00); rSR = 0.70 (0.6920.99),

n = 10 individuals). Although laboratory studies are necessary to

determine the involvement of E and M oscillators, our data are

consistent with the hypothesis of two oscillators regulating the

timing of evening and morning activity peaks.

Light intensity and masking of activity
Although crepuscular activity cannot strictly be classified as

nocturnal or diurnal, wild A. azarai showed higher levels of activity

during the night than during the day (Figure 1A, B). Across the

year, owl monkeys showed 36.6% (60.9%) of their total daily

activity during the fully dark night hours (2100–0600 h) and

20.3% (60.9%) during the bright daylight hours (09.00–18:00;

Wilcoxon signed-ranked test p = 0.005, negative ranks = 10). This

finding is consistent with a true nocturnal phenotype as described

for other owl monkeys tested in laboratory conditions [39,40]. The

nocturnal activity was associated with the availability of moonlight

and thus might be the output of a circalunar clock, namely an

endogenous biological clock with a period close to the lunar cycle

of about 24.8 h that is synchronized to the lunar-day. However,

studies with other captive owl monkey species have demonstrated

that this is unlikely the case [39,40]. To test whether nocturnal

locomotor activity in A. azarai in its natural environment may

represent a case of positive masking by moonlight, we analyzed the

relationship between locomotor activity and ambient luminance as

measured in an open savannah area in front of the monkeys’

gallery forest habitat. We restricted our analysis to data recorded

when ambient temperatures ranged between 15 and 30uC because

owl monkeys are rarely active outside this temperature range [32].

Figure 2 shows a striking relationship between locomotor activity

and luminance levels (R2 = 0.72, p = 0.0001, n = 9 individuals,

regression analysis for polynomial third degree equation). The data

indicate a 1021–103 lux range of optimal luminance for the

expression of locomotor activity. This range corresponds to light

intensities typically found during dawn and dusk, as well as during

full-moon nights. Thus, our results show that within the

temperature range when A. azarai is normally active, high

locomotor activity was only evident at low to intermediate

luminances that are typically found at dawn, dusk or during full-

moon nights. These results are consistent with laboratory studies

with other owl monkey species that demonstrated that nocturnal

activity is the output of a circadian clock synchronized to the 24-h

LD cycle, and this activity is highly dependent on the availability

of dim light during the dark phase [39,40].

Lunar eclipses and inhibition of activity
The tight association between locomotor activity and ambient

luminance is consistent with the hypothesis of positive masking of

circadian locomotor activity by dim light; in other words, activity

appears to be inhibited by low and high light intensities, but favored

under intermediate ones. Masking is usually tested under laboratory

conditions stimulating individuals with light in a dark background,

or with darkness in a light background [26,41]. Although

manipulation of light intensity in a natural setting is not possible,

three total lunar eclipses that took place during the period of study

offered the opportunity to further evaluate the effect of low light

intensity on the activity of owl monkeys. Locomotor activity was

negatively masked by the absence of light during the lunar eclipses,

at times when the animals normally exhibited maximal nocturnal

activity (Figure 3). There was an almost complete inhibition of

locomotor activity during the full eclipse when moonlight was

completely shadowed. Activity was lower during the full eclipse than

it was during the partial eclipse, penumbra and before or after the

eclipse (Friedman test, X2 = 32.35, df = 8, p = 0.000). Low levels of

activity have been previously associated with the dim light resulting

from lunar eclipses [17]. However, the observational nature of those

Figure 2. Relationship between locomotor activity levels of A.
azarai monkeys free-ranging in their natural habitat and
luminance levels. Intermediate light intensities positively mask
(increase) locomotor activity in A. azarai. Each point represents the
average normalized activity (6 SE) of 9 animals for the range of
luminances between one log-unit below and the luminance indicated
in the x-axis (for instance, the point corresponding to 1022 lux includes
the average activity recorded under luminances .1023 and #1022 lux).
Luminances corresponding approximately to full-moonlit nights, as well
dawn and dusk are indicated. The curve represents a 3rd degree
equation best fitted to the points that generated each average shown.
doi:10.1371/journal.pone.0012572.g002
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studies has obvious limitations under the pitch-dark conditions

encountered under total lunar eclipses and our results are the first

ones showing this association with more reliable and quantitative

activity records.

Ambient temperature and masking of activity
Low ambient temperatures could be a second environmental

factor negatively masking circadian locomotor activity given that

nocturnal activity, even during nights of full moon, was diminished

during the winter months (Figure 1A). To test this prediction, we

examined the relationship between activity level and ambient

temperature during optimal luminance conditions (1021–103 lux,

Figure 2). Even under optimal luminance conditions, activity

tended to be maximum between 15–25uC, reduced when

temperatures were slightly lower or higher and almost non-

existent when 5uC or lower (Figure 4, one-way ANOVA with

temperature as main factor: F1,46 = 24.49, p = 0.000).

Our results represent the first long-term field study providing

direct evidence for environmental masking in the only nocturnal

anthropoid primate. These data indicate that although rhythmic

locomotor activity may represent the output of a circadian clock,

nocturnality, namely the relative predominance of locomotor

activity during the dark phase of the natural LD cycle, is the result

of fine-tuned masking of circadian rhythmicity by environmental

light and temperature. The behavioral outcome of this masking is

nocturnal activity that is maximal during relatively warm, moonlit

nights. Whereas laboratory studies have pointed to the importance

of masking in determining environmental factors causing switches

from nocturnal activity patterns to diurnal ones or vice versa

[27,28,42], our study underscores the importance of masking in

determining the daily activity patterns of animals living in the wild.

It also suggests that moonlight has probably selected for positive

masking by dim light as a key adaptation for the exploitation of the

nocturnal niche by primates [8,11].

It is still a matter of controversy whether ancestral primates

were nocturnal, diurnal or had patterns of activity that involved

activity during both night and day [3,43]. Equally controversial is

how frequent transitions between diurnality and nocturnality, and

vice versa, occurred throughout primate evolution [44]. The

present study indicates that modifications in sensory systems, that

relay information on environmental masking factors to effector

systems which sustain locomotor activity, can influence those

evolutionary changes. The data also highlight the importance of

placing any analysis of the evolution of primate opsins [43,45,46]

in the context of positive masking of locomotor activity by

nocturnal moonlight. Our results clearly indicate that the masking

effects that ambient luminance and temperature exert on

locomotor activity have been selected as key proximate mecha-

nisms to shape the temporal niche of owl monkeys within a

gradient between nocturnality and diurnality.

Materials and Methods

Ethics Statement
The capturing and immobilization of individuals for the fitting

of the actometer collars was done in general agreement with

established protocols by the Institutional Animal Care and Use

Committees of the Zoological Society of San Diego (#146) and

the University of Pennsylvania (#801089). In accordance with

Argentinean regulations, both the National Wildlife Directorate

and the provincial Wildlife Department were at all times informed

of procedures. All procedures were classified as Category B

indicating that although there was potential for pain/distress, relief

was provided by analgesics/anesthetics/sedatives as appropriate.

Figure 3. Masking of nocturnal activity by lunar eclipses in wild
owl monkeys of the Argentinean Chaco. Activity patterns averaged
across individuals for each of the three days when the total lunar eclipses
occurred. Averages were calculated for the 2 h before the penumbra
phase (left white bar with clock time for the onset of the 2-h window), for
the 2-h after the end of the penumbra phase (right white bar with clock
time for the offset of the 2-h window), as well as for the penumbra phase
(light gray bars), the partial eclipse phase (dark gray bar) and the full
eclipse (black bar). The averages represent the mean activity per 5-min
interval for the specific phase, regardless of the phase duration. The date
of each eclipse is indicated at the top of each graph and the number of
recorded subjects is indicated between parentheses. The two hours prior
to the eclipses from Nov 8, 2003 and Oct 27, 2004 occurred at times when
brighter light intensity likely led to lower levels of activity.
doi:10.1371/journal.pone.0012572.g003
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Animals were fitted with actimeter collars (Actiwatch AW4) as

previously described [7,29]. Actimeters were programmed to

record accumulated activity counts every 5 min. For Figure 1,

activity was normalized by subtracting the mean of all 5-min

values for each actimeter data file from each individual value and

dividing the resulting number by the standard deviation of that

mean. 15-min average activity was calculated to construct the

actograms and wave profiles. For correlations with luminance and

temperature, 1-h average activity was calculated for 9 animals

because no luminance data were available for the 10th animal. The

hourly means were normalized like the 15-min ones.

The normalized hourly means were then averaged or added to

characterize diurnal or nocturnal activity. For all months, diurnal

activity was defined as activity occurring during the fully bright

part of the 24-h day (0900–1800hs), whereas nocturnal activity was

considered to take place during the completely dark part of the 24-

h day (2100–0600hs). Dawn and dusk were excluded from the

definition of nocturnal/diurnal activity because crepuscular

activity can be considered neither nocturnal nor diurnal. This

method leads to a clearer distinction between activity that takes

place truly during the night or truly during the day.

Luminance was monitored every 5 min with an Actiwatch-LP

actimeter/luxmeter data logger device with remote photocell

(Cambridge Neurotechnology, UK), placed in a small water tight

transparent acrylic box fixed on top of a 2-m high post situated in

an open area contiguous to the study site with the photocell

directed upwards to the zenith. This device can automatically

record light measurements in the 0.01–65000 Lux range and store

the data collected for approximately 30 days. The luminance levels

perceived by the monkeys were probably 1–2 log units lower than

the measured ones, because the luxmeter was placed outside the

forest. Temperature was recorded hourly with a Stowaway XTI

data logger placed at the study site. For data presented in Figure 2,

normalized hourly activity was ranked according to environmental

temperature and only data sampled between 15 and 30uC was

included in the analysis. Temperatures above 30uC are only

encountered during the early afternoon when the monkeys are

notoriously inactive [32]. For data presented in Figure 3, we first

obtained the individual average amount of activity for each of the

periods considered, then computed an across individual average.

For Figure 4, normalized hourly activity was ranked according to

luminance and only data sampled at luminances between 1021–

103 lux were included in the analysis. The measures of central

tendency and dispersion are arithmetic means 6 s.e.m. Astro-

nomical data were obtained from The Astronomical Almanac

(aa.usno.navy.mil/data) and the NASA Eclipse Website (http://

eclipse.gsfc.nasa.gov/eclipse.html).
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